Effect of Paper Versus Digital Reading in Health Professional Education: A Systematic Review and Meta-Analysis

Guillaume Fontaine, PhD, MSc,a,b Ivry Zagury-Orly, MMSc, c Marc-André Maheu-Cadotte, BSc,a,b,d Alexandra Lapierre, MSc,a,c Nicolas Thibodeau-Jarry, MD, MMSc,b,c Simon de Denus, PhD, MSc, b,1 Marie Lordkipanidzé, PhD, MSc, b,1 Patrice Dupont, B.Sc., MLIS, g Patrick Lavoie, PhD a,b

a Université de Montréal, Faculty of Nursing, Montréal, Canada
b Montreal Heart Institute, Research Center, Montréal, Canada
c Université de Montréal, Faculty of Medicine, Montréal, Canada
d Research Center, Université de Montréal Hospital Center, Montréal, Canada
e Hôpital du Sacré-Cœur de Montréal, Research Center, Montréal, Canada
f Université de Montréal, Faculty of Pharmacy, Montréal, Canada
g Université de Montréal, Health Sciences Library, Montréal, Canada

Corresponding Author: Patrick Lavoie, Université de Montréal, Faculty of Nursing, PO Box 6128, Centre-ville Station Montréal, Quebec H3C 3J7. Tel: 514 343-6111 #88927. Email: patrick.lavoie.1@umontreal.ca

Objective. Despite the rise of digital education in health professional education (HPE), little is known about the comparative effectiveness of paper-based reading and its digital alternative on reading comprehension in HPE. We aimed to identify, appraise, and synthesize the evidence regarding the effect of reading media on reading comprehension in the context of HPE.

Findings. From a pool of 2,208 references, we included 10 controlled studies enrolling 817 participants. Meta-analyses revealed a non-statistically significant advantage of paper over digital reading (standardized mean difference [SMD] −0.08; 95% confidence interval −0.28 to 0.12). Subgroup analyses revealed that students reading HPE-related texts, rather than non-HPE-related texts, had better reading comprehension when reading on paper (SMD = −0.36; 95% confidence interval −0.69 to −0.03). Heterogeneity was low in all analyses. The quality of evidence was low due to risks of bias across studies.

Summary. Current evidence suggests little to no difference between paper and digital texts for reading comprehension in HPE. However, we observed effects favoring paper-based reading when considering texts relevant to students’ professional discipline. Rigorous studies are needed to confirm this finding and to evaluate new means of boosting reading comprehension in HPE.

Keywords: evidence synthesis, literature review, e-learning, reading material, health care education

INTRODUCTION

Digital education has become ubiquitous in health professional education (HPE). 1-3 It can be defined as “the act of teaching and learning by means of digital technologies.”4(p. 3) Digital education encompasses various teaching and learning approaches, ranging from the simple transformation of text from paper-based to digital formats (eg, portable document format) to the interactive use of sophisticated digital technologies.4 A majority of health professional students and practitioners report using a digital device in their studies or routine clinical practice.4,5 Despite the rise of digital education, little is known about the comparative effectiveness of reading media—paper-based reading versus its digital alternative—on reading comprehension in HPE.6,7

Reading comprehension is a complex process that involves the ability to recall, understand, integrate, and evaluate text, and depends on several factors, including the reader (eg, vocabulary, degree of familiarity with the text), the reading content (eg, degree of complexity), and the reading media (see Table 1 for definitions).5,9 Reviews investigating the impact of reading media on reading comprehension have yielded inconsistent results but tend to favor paper-based reading for comprehension and retention of information.10-14 Proposed explanations for lower digital-based reading results include readers’ variable experience with technology, overconfidence in comprehension, and more superficial reading when using technology.15,16 Furthermore, the physical presence of a paper text may facilitate reading comprehension and learning.17

Previous reviews did not examine the impact of reading media in the context of HPE, an exercise that is of both clinical, disciplinary and cross-disciplinary interest. From a clinical standpoint, reading comprehension is essential to acquire the knowledge base for effective clinical decision-making that is required for the provision of safe, quality care.18,19 HPE often follows a similar, cross-disciplinary learning framework: a pre-clinical phase characterized...
by basic science education and a clinical phase integrating prior knowledge and applying it to cases in a clinical context. In all health professions, learners are driven by clinical considerations and a patient-centered perspective influencing their collection and processing of information and consequent decision-making. Examining reading comprehension in the context of HPE may eventually allow drawing inferences between reading comprehension and clinical outcomes.

From a disciplinary standpoint, tenets of disciplinary literacy suggest that the cognitive requirements for reading are intertwined with the specialized knowledge of those who produce and communicate knowledge within each discipline.20 This is in opposition to the view that reading builds on a generic set of skills and strategies, regardless of the discipline.21 While the effect of text genre on reading comprehension was considered in previous reviews, they did not examine whether the topic of the text was related to students’ discipline.9,10 Providing students with texts relevant to their discipline may aid their reading comprehension by building on prior knowledge and disciplinary habits of mind (eg, ways of thinking, reasoning, and critiquing).1 A key learning principle is relevancy; thus, students deeming a text less relevant could have a less meaningful learning experience.22 Thus, we believe differentiating between texts that are HPE-related and those that are not is fundamental.

Finally, from a cross-disciplinary standpoint, we believe that examining reading comprehension in HPE specifically also provides important insights for other fields of study. The current review will provide a new framework for examining reading comprehension in specific populations, a variable not explicitly controlled for in previous systematic reviews. This is important not only for providing meaningful material to learners, but also in terms of systematic review methodology as a way of reducing potential population and intervention heterogeneity.

Thus, this systematic review builds on previous evidence by considering studies in which the effectiveness of reading media on reading comprehension was evaluated in the context of HPE, examining the effect of text topics (HPE-related or non-HPE-related) considering students’ professional discipline, and including studies with graduate students.

Our objective was to identify, appraise, and describe studies comparing the effectiveness of paper-based versus digital-based reading on reading comprehension among students, trainees, and residents in HPE.

METHODS
This systematic review was conducted following the Joanna Briggs Institute guidelines.23 This paper is reported according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines and the PRISMA-S guidelines for reporting literature searches.24,25 The protocol has been published and registered in the International Prospective Register of Systematic Reviews on April 28, 2020 (PROSPERO; CRD42020154519).

Study eligibility
This review considered observational, quasi-experimental, and experimental studies published in any language that compared the effectiveness of paper-based versus digital-based reading on reading comprehension. We defined reading comprehension as the immediate recall or understanding of the textual content among HPE students, trainees, and residents. We excluded studies conducted with individuals with reading difficulties, cognitive impairments, and related disorders. Paper-based reading was defined as reading text printed on paper (eg, books, articles). Digital reading was defined as “reading text on digital screens, including computers, tablets, mobile phones, and e-readers.”10 Studies examining media that included videos, animations, hyperlinks, web navigation, gamification, and adaptivity were excluded because these features could confound the results.10

Search strategy
The search strategy was designed to focus on three concepts: (1) students, trainees, and residents participating in HPE (population); (2) reading media (intervention); and (3) reading comprehension (outcome). The search strategies for all databases are presented in Appendix 2. We performed searches in six databases (CINAHL via EbscoHost, EMBASE via OVID, ERIC via ProQuest, Medline via OVID, PsychInfo via EbscoHost, and Web of Science) on April 16 and April 17, 2020.

Study selection
Identified citations were uploaded in the Covidence software (Veritas Health Innovation, Melbourne, Australia; www.covidence.org). Duplicates were removed using Covidence. Two independent authors screened studies and reviewed full texts. Disagreements were resolved through discussion.

Assessment of study quality and risk of bias
We worked independently and in duplicate to assess study quality using the Medical Education Research Study Quality Instrument (MERSQI) (Reed et al., 2007). We also assessed risks of bias independently using the Effective Practice and Organization of Care (EPOC) risk of bias criteria.28 Risks of bias refer to methodological elements that could affect the internal validity of study results.
Data extraction

We used Covidence to perform data extraction independently and in duplicate. We extracted data at four levels: (1) study level; (2) participant level; (3) intervention level; (4) outcome level. Data items extracted are specified in the published protocol.26 In addition, we have added variables related to the context of intervention implementation, including the degree of distraction (low, medium, or high) and presence of supervision (yes, no). We considered the degree of distraction: low, when reading and assessment of reading comprehension was conducted in a supervised setting without evident mention of potential distractors; medium, when in a supervised setting with possible distractors (e.g., multiple testing stations), and high, when in an unsupervised setting (e.g., home) with an uncontrollable and unspecified degree of distraction.

Data synthesis

The characteristics of studies and interventions were synthesized in a table. We undertook random-effects meta-analyses in Review Manager (RevMan) software version 5.3 (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014) to compare the effects of paper versus digital reading on reading comprehension in HPE. Data were analyzed using standardized mean differences (SMD) with 95% confidence intervals (CI). Heterogeneity was assessed by examining the characteristics of studies, and statistically using the I^2 statistic. Three subgroup analyses were carried out to investigate the impact of moderators on statistical heterogeneity: (1) HPE-related texts; (2) reading time frame (3) presence of supervision. The risk of reporting bias was assessed qualitatively based on the country of study conduct, the year of study publication, and the statistical significance of study results. Assessment of the quality of evidence

We worked independently to assess the quality of evidence, or our confidence, in the pooled SMD. We used the Grading of Recommendations Assessment, Development and Evaluation web-based software (GRADEpro; 2015, McMaster University and Evidence Prime Inc.; https://gradepro.org). We considered five factors for assessing the quality of evidence (risk of bias, indirectness of evidence, unexplained heterogeneity or inconsistency of results, imprecision of the results, probability of reporting bias).

FINDINGS

Study flow

From a pool of 2,208 potentially relevant articles, we found 10 quantitative, controlled studies comparing the effects of paper and digital reading on reading comprehension in HPE. Eight studies were included in the meta-analysis because they provided enough data to calculate SMD (Figure 1).

Characteristics of studies included

Selected characteristics of studies included are summarized in Table 2. Nine studies were randomized controlled trials, and one was a non-randomized controlled trial. Participants were undergraduate psychology students (n=5), 6,7,29-31 undergraduate dental students (n=2), 32 graduate medical students (n=2), 33,34 and graduate optometry students (n=1)—all of which are considered to be students in HPE.35,36 Studies involving graduate students, including medical and optometry students, accounted for three of the 10 studies included. The median sample size was 70 participants. All included studies were deemed of moderate quality according to the MERSQI; scores ranged from 10.5 to 12.5 out of 18 possible points.

Characteristics of interventions

Key characteristics of paper-based and digital-based reading media are summarized in Table 2. Reading topics varied greatly, ranging from oral histology to microeconomics. Whereas all studies included health professional students, the topic of texts was related to HPE in four studies, non-related to HPE in five studies, and not specified in one study. We observed significant variations regarding text length. The reading time was unlimited in five studies, limited to 5 to 25 min in four studies, and not specified in one study. In a majority of studies, students’ reading was supervised in a controlled setting (n=7), which meant that there was a low of medium potential for distraction. In the three remaining studies, students read at home and were not supervised, suggesting a high potential for distraction.

Risk of bias assessment

All studies were judged to be at high risk of bias. The risk of selection bias was high or unclear in all studies, as was the risk of bias related to imbalances between groups in characteristics of participants at baseline. The risk of bias related to imbalances between groups in outcome measurements at baseline were high or unclear in eight studies.6,7,29-31,33-35 Six studies had a high or unclear risk of attrition bias.6,29-31,33,34 Six studies had a high or unclear risk of performance bias.6,7,31,33-35 Six studies had a high or unclear risk of contamination bias.6,29,31,33-35 Finally, the risk of reporting bias was low in all but one study.33
Effect of reading media on reading comprehension (immediate recall)

Two studies could not be pooled in the meta-analysis due to missing data. The pooled effect size across eight studies revealed a negligible and non-statistically significant advantage of paper- over digital-based reading media for reading comprehension (SMD = −0.08; 95% confidence interval −0.28 to 0.12; p=.43; Figure 3). Heterogeneity was low (I² = 21%).

Effect of reading media on reading comprehension in studies that could not be meta-analyzed

In a cluster-randomized trial with medical students, Matthes, Herzig, Muller, Stosch observed that a digital basic pharmacology e-book had a small, non-significant advantage over a similar paper book on final scores from a written multiple-choice exam (SMD 0.27; p=.08). Similarly, in a study on introductory psychology students, Taylor noted no differences in reading comprehension between students who used digital texts and those who used paper texts (the effect size and the p-value were non-reported and could not be calculated based on the data presented).

Subgroup analyses

We conducted three subgroup analyses: 1) studies in which students read texts on topics related to HPE versus non-related to HPE; 2) studies in which reading time was unlimited versus limited; and 3) studies in which reading was supervised versus unsupervised. We observed a modest, statistically significant difference (p=.04) in favor of paper-based reading for HPE-related texts (SMD = −0.36; 95% confidence interval −0.69 to −0.03; I²=0%) compared to non-HPE related texts (SMD = −0.08; 95% confidence interval −0.17 to 0.24; I²=0%). We found no statistically significant difference (p=.59) between paper and digital reading regarding reading time. We observed a modest, statistically significant difference (p=.02) in favor of paper-based reading in unsupervised settings (SMD = −0.57; 95% confidence interval −1.06 to −0.08; I²=0%) compared to supervised settings (SMD = 0; 95% confidence interval −0.19 to 0.18; I²=0%). However, the two studies meta-analyzed for unsupervised settings were drawn from the same paper.

Quality of the evidence

The quality of the evidence regarding the effect of reading media on reading comprehension was deemed low (Figure 4) due to the high risks of bias across studies. However, inconsistency, indirectness, and imprecision were deemed not serious.

DISCUSSION

This is the first systematic review to compare the effect of paper-based and digital-based reading media on reading comprehension in HPE. We identified 10 studies published since 2001. The pooled effect size across eight studies revealed a negligible, non-statistically significant advantage of paper-based over digital-based reading media for reading comprehension. Despite the small number of studies, a subgroup analysis revealed a modest, statistically significant increase in reading comprehension when students read paper copies of HPE-related texts compared to digital copies of the same texts. Risk of bias was generally high across studies, and the quality of evidence was low.

The negligible, non-significant advantage of paper-based reading found in this review is similar to the results of previous reviews. These reviews found a small, statistically significant advantage of paper-based reading over digital-based reading. Our results also revealed marked variability regarding the characteristics of texts used to assess reading comprehension in HPE. Less than half of studies involved texts on topics related to students’ discipline (eg, oral histology, optometry), whereas the rest used texts on non-related topics (eg, short fiction, microeconomics). Prior research has highlighted the importance of text characteristics, including topic and relevance, when assessing reading comprehension. The statistically significant difference in favor of paper-based reading for HPE-related texts echoes these previous findings; it suggests increased effects of reading media when considering texts relevant to students’ discipline.

Our findings reveal that unsupervised, uncontrolled environments led to a small but statistically significant difference in favor of paper-based reading, when compared to supervised, controlled environments. This finding should be interpreted with caution: only two studies were unsupervised, both published by the same authors in a single article. That said, it is possible that this finding can be explained by the fact that in unsupervised settings, learners using digital devices may be more easily distracted by social media, digital notifications, or web browsing to name a few. This could explain why paper-based media appears to favor reading comprehension in unsupervised settings where learners are less exposed to such distractions. Research suggests that students regularly fall prey to distractions when using digital devices. Over a quarter of students self-report in-class, off-task distractions, and it is estimated that 50% of students’ laptop time is spent on tasks unrelated to their studies. Interestingly, it appears that the impact of digital-based reading is more negative for easy-to-read material in comparison to hard-to-read texts.

Concerns for the distraction potential of digital devices such as smartphones or laptops may be minimized using e-readers, whose sole function is to enable reading. In our review, only one study focused on reading comprehension with e-readers (Margolin, 2013), as compared to computer- and paper-based media—no difference
was found. However, this study was conducted in a low distraction, supervised setting. Another study with 5th grade students compared reading on e-readers and paper and found no significant differences in students’ attitudes, motivation or reading comprehension. Additional studies must be conducted before the impact of e-readers on reading comprehension can be appropriately assessed. These studies should directly compare electronic devices with a potential for distractions (eg, laptops, computers, smartphones) to e-readers that limit such distractions. Besides the degree of distraction, future studies should be explicit about the tasks that students are asked to perform and the restraints that are in place when using the digital device.

More studies on the effect of reading media on reading comprehension in HPE are needed using rigorous study designs (eg, randomized trials, non-inferiority trials, factorial trials), interventions, and outcome measures. Indeed, given the high risk of bias of the published literature, future studies should be conducted as per the most recent standards for trials (eg, CONsolidated Standards Of Reporting Trials, CONSORT). Findings from properly designed RCTs, if consistent with our findings, may confirm that digital media is non-inferior to paper-based media in terms of its impact on reading comprehension in HPE—a finding that could have significant implications on reading efficiency. Indeed, students reading computer passages read significantly faster than students who read on paper. Discrepancies in reading speed may impact the time efficiency that is central to future health care professionals’ practice.

Due to the various known advantages of digital media, namely, ease of access, organization, and eco-friendliness, the time-saving benefit of digital-based reading needs to be investigated. Educators and researchers need to consider that digital-based reading is only one educational component of modern e-learning programs, which may provide benefits for HPE that would not be possible through static, paper-based learning. For example, some e-learning programs include adaptivity features to personalize learning content through the consideration of each learner’s knowledge. This can increase learning efficiency, reduce superfluous cognitive load, and support learner engagement.

However, in a recent commentary by Fjortoft and colleagues, the authors cautioned against the overreliance of technology among pharmacy students and the possible impact on their long-term memory, suggesting a concurrent association with a decreased passing rate for the national board examinations in recent years. Although many variables can explain such a decreasing trend, this review provides preliminary insight as to whether the reading media should be considered as part of curricular planning.

This review has various strengths and limitations. In terms of strengths, the protocol was prospectively registered and published, which enhances the transparency of the research process. Besides, the search strategy was developed over several months with an experienced librarian to ensure specificity, sensibility, and replicability. In terms of limitations, outcome measures varied across studies. To address this variation, we conducted meta-analyses using SMD to standardize the results of studies to a uniform scale before pooling them. Furthermore, although we had initially planned to assess the effect of digital media on skill development and clinical behavior, the absence of such data in the studies included prevented us from doing so.

SUMMARY

This review did not find any significant differences between digital and paper-based reading, except when the topic of the text and its relevance to students’ professional discipline was considered, in which case paper-based reading yielded a modest advantage over digital media. This review highlights the need for robust randomized trials in HPE using HPE-related texts to strengthen the quality and validity of the current evidence.

ACKNOWLEDGMENTS

This work was supported by the Cercle du Doyen, Faculty of Pharmacy, Université de Montréal, Canada. GF is a Vanier Canada Graduate Scholar (CIHR) and was supported through funding from Sanofi and AstraZeneca, for unrelated work. ML is a Fonds de recherche du Québec en Santé (FRQS) Junior 1 Research Scholar (33048). ML has received speaker fees from Bayer; has served on advisory boards for Servier, has participated in industry-funded trials from Idorsia; and has received in-kind and financial support for investigator-initiated grants from Leo Pharma, Roche Diagnostics and Aggreylene, for unrelated work. SdeD was supported through grants from Pfizer, AstraZeneca, Roche Molecular Science, DalCor, for unrelated work. PL is a Fonds de recherche du Québec en Santé (FRQS) Junior 1 Research Scholar (282306). PL has provided consultant advice to Chenelière Éducation for textbook translation and adaptation. IZ-O presented this work at the virtual SALTISE Conference on June 3, 2021.

REFERENCES

<table>
<thead>
<tr>
<th>Definition</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital education</td>
<td>An umbrella term encompassing all the learning activities conducted through the use of information and communication technology (ICT).</td>
</tr>
<tr>
<td>Reading content</td>
<td>The subject/materials provided to the learner which he is expected to read.</td>
</tr>
<tr>
<td>Reading media</td>
<td>Platform used for the purpose of reading, which could be either digital or paper-based.</td>
</tr>
<tr>
<td>Digital-based</td>
<td>This encompasses the use of any digital device to display the reading content in a given digital format.</td>
</tr>
<tr>
<td>Digital device</td>
<td>Digital devices include desktop computers, laptops, tablets, smartphones and e-readers.</td>
</tr>
<tr>
<td>Digital format</td>
<td>Digital format refers to the type of document (eg, PDF, Word, HTML) within the digital device.</td>
</tr>
<tr>
<td>Text navigation</td>
<td>Text navigation features are contingent on the digital device and format. Examples include scrolling, page flipping, the use of a mouse, and the use of arrows.</td>
</tr>
<tr>
<td>Paper-based</td>
<td>This encompasses the use of any paper format to present the reading content.</td>
</tr>
<tr>
<td>Paper format</td>
<td>Paper format refers to any type of printed text (eg, books, printed articles, and newspapers).</td>
</tr>
</tbody>
</table>
Table 2. Characteristics of included studies.

<table>
<thead>
<tr>
<th>Author, year, country</th>
<th>Study design</th>
<th>Study participants</th>
<th>MERSQI score<sup>b</sup></th>
<th>Intervention (reading media)</th>
<th>Format</th>
<th>Text navigation</th>
<th>Reading content</th>
<th>Text length</th>
<th>Reading environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayes (2001) USA</td>
<td>RCT</td>
<td>Undergraduate psychology students N = 48</td>
<td>11.5</td>
<td>Paper reading</td>
<td>Article</td>
<td>Page flipping</td>
<td>American Scientist article “Designed to Fail”</td>
<td>2 pages</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Digital reading; desktop computer</td>
<td>PDF</td>
<td>NR</td>
<td>American Scientist article “Designed to Fail”</td>
<td>2 pages</td>
<td>Low</td>
</tr>
<tr>
<td>Green (2010) USA</td>
<td>RCT</td>
<td>Undergraduate psychology students N = 82</td>
<td>11</td>
<td>Paper reading</td>
<td>Article</td>
<td>Page flipping</td>
<td>Meteorology and enology</td>
<td>2 pages</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Digital reading; desktop computer</td>
<td>PDF</td>
<td>Computer mouse</td>
<td>Meteorology and enology</td>
<td>2 pages</td>
<td>Low</td>
</tr>
<tr>
<td>Taylor (2011) USA</td>
<td>RCT</td>
<td>Undergraduate psychology students N = 74</td>
<td>10.5</td>
<td>Paper reading</td>
<td>Paperbound text</td>
<td>Page flipping</td>
<td>Microeconomics</td>
<td>49 pages</td>
<td>Un</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Digital reading</td>
<td>NR</td>
<td>NR</td>
<td>Microeconomics</td>
<td>49 pages</td>
<td>Un</td>
</tr>
<tr>
<td>Matthes (2012) Germany</td>
<td>RCT</td>
<td>Medical students N = 269</td>
<td>11.5</td>
<td>Paper reading</td>
<td>Printed text</td>
<td>NR</td>
<td>Basic medical pharmacology</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Digital reading; desktop computer</td>
<td>PDF</td>
<td>NR</td>
<td>Basic medical pharmacology</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Ramseier (2012a) Switzerland</td>
<td>NRCT</td>
<td>Undergraduate dental students N = 35</td>
<td>10.5</td>
<td>Paper reading</td>
<td>Text on paper</td>
<td>Page flipping</td>
<td>Oral histology</td>
<td>43 pages, 6 chapters</td>
<td>Un</td>
</tr>
<tr>
<td>Ramseier (2012b) Switzerland</td>
<td>RCT</td>
<td>Undergraduate dental students N = 32</td>
<td>11.5</td>
<td>Paper reading</td>
<td>Text on paper</td>
<td>Page flipping</td>
<td>Oral histology</td>
<td>43 pages, 6 chapters</td>
<td>Un</td>
</tr>
<tr>
<td>Margolin (2013) USA</td>
<td>RCT</td>
<td>Undergraduate psychology students N = 90</td>
<td>12.5</td>
<td>Paper reading</td>
<td>Printed text</td>
<td>NR</td>
<td>NR</td>
<td>1084 words</td>
<td>Un</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Digital reading; desktop computer or Kindle</td>
<td>PDF (for desktop computer)</td>
<td>Scrolling with a computer mouse or computer arrow keys</td>
<td>NR</td>
<td>1084 words</td>
<td>Un</td>
</tr>
<tr>
<td>Sechser (2014) USA</td>
<td>RCT</td>
<td>Undergraduate psychology students N = 67</td>
<td>11.5</td>
<td>Paper reading</td>
<td>Text on paper</td>
<td>NR</td>
<td>Fiction short story</td>
<td>706 words</td>
<td>Un</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Digital reading; desktop computer</td>
<td>NR</td>
<td>NR</td>
<td>Fiction short story</td>
<td>706 words</td>
<td>Un</td>
</tr>
<tr>
<td>Ramalingam (2018) Malaysia</td>
<td>RCT</td>
<td>Medical students N = 80</td>
<td>12.5</td>
<td>Paper reading</td>
<td>Text on paper</td>
<td>NR</td>
<td>Fiction short story</td>
<td>NR</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Digital reading; laptop computer</td>
<td>NR</td>
<td>NR</td>
<td>Fiction short story</td>
<td>NR</td>
<td>Low</td>
</tr>
<tr>
<td>McDowell (2019) USA</td>
<td>RCT</td>
<td>Optometry students N = 40</td>
<td>12</td>
<td>Paper reading</td>
<td>Text on paper</td>
<td>NR</td>
<td>Optometry</td>
<td>NR</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Digital reading; desktop computer</td>
<td>Word documents</td>
<td>NR</td>
<td>Optometry</td>
<td>NR</td>
<td>Low</td>
</tr>
</tbody>
</table>

^a NA = not applicable; NR = not reported.
^b RCT = Randomized controlled trial; NRCT = Nonrandomized controlled trial.
^c MERSQI = Medical Education Research Quality Instrument.
Figure 1. Study flow diagram.
Figure 2. Forest plot, effects of digital versus paper reading on reading comprehension.
Figure 3. Quality of evidence regarding the effect of reading media on reading comprehension. Includes seven randomized controlled trials and one non-randomized controlled trial.

<table>
<thead>
<tr>
<th>Reading comprehension (immediate recall)</th>
<th>Certainty assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Certainty</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No of studies</td>
<td>Study design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Randomised trials</td>
<td>Very serious</td>
<td>not serious</td>
<td>not serious</td>
</tr>
</tbody>
</table>

CI: Confidence interval; SMD: Standardised mean difference

Explanations:

a. In ≥50% of studies, bias related to random sequence generation, allocation concealment, similarity of baseline outcome measurements, similarity of baseline characteristics, and incomplete outcome data were unclear or high.